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Abstract

This short-paper presents a theoretical framework demonstrating that integrat-
ing volcanic activity observation data from multiple perspectives enhances the per-
formance of eruption classification models. By combining individual models’ AUC
values (AUCi), the Pearson correlation coefficients among models (Σ), and the num-
ber of models (m), we derive an approximate expression for the ensemble model’s
AUC. This framework provides quantitative insights into the extent of performance
improvement, the necessary performance levels and quantities of observation data,
and the degree of diversity required among the observational data capturing differ-
ent aspects of volcanic activity. Additionally, we explore the dependence of Pearson
correlation coefficients on the time scales of the observational data, highlighting the
benefits of integrating data with diverse temporal dynamics.

1 Introduction

Integrating multiple observational datasets in volcanic monitoring models is generally
believed to enable more accurate predictions. However, there is a lack of a theoretical
framework to quantitatively address questions such as how much the performance can be
improved, how many and what performance levels of observational data are required, and
to what extent the observational data should capture different aspects of volcanic activity.
This study theoretically analyzes the performance enhancement of ensemble models based
on the performance of individual models and the correlations between them. Furthermore,
we delve into the relationship between time-scale diversity in observational data and the
resulting correlation coefficients, providing deeper insights into the benefits of multivariate
data integration.

2 Theoretical Framework

2.1 AUC for Each Observational Data

Each decision tree’s output follows a Bernoulli distribution with a fixed probability. There-
fore, the sum of multiple decision tree outputs can be represented as a binomial distribu-
tion. When the conditions np > 5 and n(1−p) > 5 are satisfied, the binomial distribution
can be approximated by a normal distribution. Specifically, the outputs for positive cases
(eruption) and negative cases (non-eruption) follow the normal distributions:

S+ ∼ N(µ+, σ
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where S+ denotes the output for positive cases and S− for negative cases. The AUC
(Area Under the Curve) for each observational dataset, interpreted as the probability
that a positive case’s output exceeds that of a negative case, is expressed as:

AUCi = P (Si
+ − Si

− > 0) = Φ

(
µDi

σDi

)
Here, Di = Si

+ − Si
− is defined, and since Di follows a normal distribution N(µD, σ

2
D),

the AUC can be represented using the cumulative distribution function Φ of the standard
normal distribution. The parameters are µD = µ+ − µ− and σ2

D = σ2
+ + σ2

−.

2.2 AUC for Weighted Ensemble Model

For the ensemble model, the outputs of individual decision trees are scaled by weights wi

and averaged:

Sensemble =
m∑
i=1

wiSi, where
m∑
i=1

wi = 1.

The AUC of the ensemble model is then approximated by:

AUCensemble = Φ

(∑m
i=1 wiΦ

−1(AUCi)√
w⊤Σw

)
In this equation, w represents the weight vector, and Σ is the Pearson correlation matrix
among the individual models. This expression provides a guideline for selecting optimal
weights based on the performance and correlations of individual models to maximize
the ensemble model’s predictive performance. The theoretical framework supports the
expectation that ensemble models integrating multiple diverse observational data sources
will exhibit improved prediction performance.

2.3 Derivation of Correlation from Power Spectral Density

Understanding the Pearson correlation coefficients between models is crucial for optimiz-
ing the ensemble performance. We derive the correlation coefficients based on the power
spectral density of the models’ time-series outputs.

2.3.1 Relationship Between Time-Series Data and Power Spectral Density

Let fi(t) and fj(t) be the time-series outputs from models i and j, respectively. The power
spectral density Pi(ω) is the Fourier transform of the autocorrelation function Ri(τ):

Pi(ω) =

∫ ∞

−∞
Ri(τ)e

−iωτdτ, Ri(τ) = E[fi(t)fi(t+ τ)]

For two models, the cross-spectral density Pij(ω) is the Fourier transform of the cross-
correlation function:

Pij(ω) =

∫ ∞

−∞
Rij(τ)e

−iωτdτ, Rij(τ) = E[fi(t)fj(t+ τ)]
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2.3.2 Histogram Representation of Time-Series Data

The histogram Si approximates the distribution of fi(t). Utilizing Parseval’s theorem, the
variance of fi(t) is related to its spectral density:

Var(fi) =

∫ ∞

−∞
Pi(ω)dω

Similarly, the covariance between fi(t) and fj(t) is given by:

Cov(fi, fj) =

∫ ∞

−∞
Pij(ω)dω

2.3.3 Correlation Coefficient in Terms of Power Spectral Density

The Pearson correlation coefficient ρij is defined as:

ρij =
Cov(fi, fj)√
Var(fi)Var(fj)

Substituting the spectral density representations:

ρij =

∫∞
−∞ Pij(ω)dω√∫∞

−∞ Pi(ω)dω ·
∫∞
−∞ Pj(ω)dω

Assuming Pij(ω) ≈ Pi(ω)Pj(ω) for simplicity, the numerator becomes the inner product:∫ ∞

−∞
Pi(ω)Pj(ω)dω

Thus, the final form of the correlation coefficient is:

ρij =

∫∞
−∞ Pi(ω)Pj(ω)dω√∫∞

−∞ Pi(ω)2dω ·
∫∞
−∞ Pj(ω)2dω

ρij ∝
∫ ∞

−∞
Pi(ω)Pj(ω)dω

This indicates that the Pearson correlation coefficient is proportional to the inner product
of the power spectral densities of the two models. Consequently, observational data
capturing different time scales tend to have lower Pearson correlation coefficients, which
implies that integrating such diverse data sources can significantly contribute to improving
the AUC of the ensemble model.

3 Implications for Volcanic Activity Prediction

The derived theoretical framework provides several key insights for enhancing volcanic
activity prediction models:

1. performance Improvement: By understanding how individual model perfor-
mances and their correlations contribute to the ensemble’s AUC, practitioners can
strategically select and weight models to achieve optimal prediction performance.
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2. Data Requirements: The framework quantifies the necessary performance levels
and the number of observational datasets required to attain desired performance
improvements.

3. Diversity of Observational Data: Incorporating observational data that capture
different aspects or time scales of volcanic activity reduces inter-model correlations,
thereby enhancing the ensemble’s overall performance.
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